Objectifs
Il s'agit d'un parcours en Data Science construit sur de solides bases statistiques et économétriques. Les étudiants apprendront à coder et à appliquer des techniques d'apprentissage automatique (machine learning) ainsi qu'à interpréter et à communiquer les résultats de leurs projets scientifiques. Les étudiants pourront ainsi contribuer à l'élaboration de réponses pertinentes et robustes aux questions que les entreprises et les administrations peuvent se poser dans leur prise de décision.
Au-delà d'une solide connaissance des méthodes économétriques et d'apprentissage automatique et de leurs conditions d'utilisation, les étudiants seront formés à leur mise en œuvre sur des données réelles et à la présentation des résultats, sous forme orale ou écrite, à des publics variés. Les étudiants seront formés à l'utilisation de l'anglais dans tout contexte professionnel : converser en anglais, utiliser un vocabulaire technique, comprendre une documentation et des articles, rédiger en anglais.
A la fin du M2, nos étudiants auront acquis les compétences techniques pour gérer et analyser des ensembles de données massives, les soft skills pour communiquer, et ainsi être en mesure de poursuivre des carrières professionnelles en tant que Data Scientists ou Data Analysts. La pédagogie est basée sur la réalisation de projets. La capacité d'analyse de l'étudiant dans un contexte professionnel, et donc son employabilité, est développée par un stage de fin d'études, complété par la rédaction et la présentation d'un rapport. Le parcours est ouvert à "alternance/apprentissage " ; dans ce cas, les étudiants alternent entre cours à l'université et travail en entreprise.